all.²⁰ On the other hand all five C-H stretching modes for the σ -C₅H₅ group of C_s symmetry are infrared active and the four associated with the olefinic hydrogens would be expected to occur at frequencies greater than 3000 cm^{-1} . Thus the 3000 cm^{-1} region offers a clear and simple choice to be made regarding the mode of bonding of C_5H_5 rings in these compounds, a point overlooked by Fritz²¹ in his review of infrared spectra of metal- C_nH_n systems.

The infrared spectra of $(CH_3)_3SiC_5H_5$, $(CH_3)_3Ge$ - C_5H_5 , and $(CH_3)_3SnC_5H_5$ (Figure 5) all show several absorptions above 3000 cm-I, consistent *only* with the a-cyclopentadienyl geometry. We feel justified in concluding that $(CH_3)_3$ SnC₅H₅ has a fluxional σ -bonded

 C_5H_5 ring but that the barrier to migration of the $(CH_3)_{3}$ -Sn group around the ring is so low that even at -80° only one proton resonance can be observed. The suggestion by others^{22,23} that the C_5H_5 rings in tin-(IV)-cyclopentadiene compounds are π bonded has no basis in experimental fact.

Acknowledgments.—We thank the Alfred P. Sloan Foundation for a fellowship (A. D.), 1967-1969, and the National Science Foundation for a predoctoral fellowship (P. E. R.), 1966-1968, and Grant GP 6672. We also wish to thank Dr. Arthur J. Ashe, 111, for informing us of his results in advance of publication.

(22) G. A. Shchembelov and Yu. A. Ustynyuk, *Dokl. Akad. Nauk SSSR*, **173,** 1364 (1967).

(23) **A.** N. Nesmeyanov, L. **A.** Fedorov, R. **R.** lTaterikovn, E. **I.** Fedin, and N. S. Kochetkova, *ibid.,* **183,** 356 (1968).

> CONTRIBUTION FROM THE CHEMISTRY DEPARTMENT. MCGILL UNIVERSITY, MONTREAL, CANADA

The Infrared Spectrum of the **3,5-Dimethyl-1,2-dithiolylium(I)** Cation

BY OLAVI SIIMANN AND JAMES FRESCO

Received June 23, 1969

The infrared spectrum of bis(3,5-dimethyl-l,2-dithiolylium) tetrachloroferrate(I1) has been recorded from 1700 to 300 cm⁻¹. Assignments for the in-plane vibrations of the cation were obtained by a normal coordinate analysis. A planar and cyclic structure adopted for the 3,5-dimethyl-1,2-diselenolylium(I) cation permitted vibrational assignments by the same normal-coordinate treatment. The nature of bonding in cyclic disulfides and diselenides is discussed,

Introduction

Under conditions which have favored the formation of dithioacetylacetone chelates' from ordinary metal salts, the reaction of iron(III) produced a compound² whose properties and structure were completely different. This compound was identified as bis(3,5 dimethyl-l,2-dithiolylium) tetrachloroferrate(I1) by X-ray diffraction³ and consists of planar, five-membered, cyclic disulfide cations and an anionic iron chloride species. In aqueous solution the cation has been reduced to a dithioacetylacetone species whose brief existence could only be recognized by the *in situ* formation of dithioacetylacetone chelates.⁴ The disulfide cation may, therefore, be considered as a potential source of the unstable ligand and dithioacetylacetonates which have eluded previous synthetic attempts.

Although infrared spectra have been reported for various salts containing the disulfide cation, assignment of the frequencies was considered only tentative.^{5,6} A

normal-coordinate analysis of the cation has now been completed with good agreement between calculated and observed frequencies. Assignments for in-plane vibrations were accordingly made. The results of these calculations are reported here.

Experimental Section

Preparation of $(C_5H_7S_2)_2FeCl_4$. Hydrogen chloride gas was bubbled through a solution of 18 g of anhydrous ferric chloride and 20 ml of acetylacetone in 300 ml of ethanol cooled to -10° . After 1 hr the hydrogen chloride was replaced by hydrogen sulfide and the bubbling was continued 1 hr. Dark red-violet crystals precipitated after dilution with 300 ml of anhydrous ether. The product was washed with ether and dried *in vacuo. And.* Calcd for $C_{10}H_{14}Cl_4S_4Fe$: Fe, 12.14. Found: Fe, 11.85.

Spectral Measurements

The spectrum was recorded with a Perkin-Elmer 521 infrared spectrophotometer over the range 1700-300 cm^{-1} . Potassium bromide and cesium bromide pellets and a Nujol mull were prepared. Calibration of frequency readings was performed with polystyrene film and water vapor.

Method of Calculation

The point symmetry of the planar 1,2-dithiolylium cation is C_{2v} if the methyl groups are considered as point masses as shown in Figure 1, This simplification

⁽²⁰⁾ For a further discussion see: F. **A.** Cotton and L. T. Reynolds, *J. Am. Chem. Soc.,* **80,** 269 (1958).

⁽²¹⁾ H. P. Fritz, *Advaiz. OvgaiiometaZ. Chem.,* **1,** 239 (1964).

⁽¹⁾ 0. Siimann and J. Fresco, *Inovg. Chem.,* **8,** 1846 (1969).

⁽²⁾ K. Knauer, P. Hemmerich, and J. D. W. van Voorst, **Aizgew.** *Chem. Intern. Ed. Engl.,* **6,** 262 (1967).

⁽³⁾ H. C. Freeman, G. H. W. Milburn, C. E. Nockolds, P. Hemmerich, and K. H. Knauer, *Chem. Commun.,* **55** (1969).

⁽⁴⁾ 0. Siimann and J. Fresco, unpublished results.

⁽⁵⁾ A. Furuhashi, K. Watanuk, and A. Ouchi, *Bull. Chem. Soc. Japan*, **41,** 110 (1968).

⁽⁶⁾ *G.* **A.** Heath, R. L. Martin, and I. M. Stewart, *Auslraliniz J. Chem* **aa, 83** (1969).

Figure 1.-Molecular model and internal coordinates.

has been successfully applied to the structurally related complexes of acetylacetone⁷ and dithioacetylacetone.¹ These results were confirmed by an analysis⁸ which included the methyl group hydrogen atoms in the molecular symmetries of copper(II), palladium(II), and iron(II1) acetylacetonates. Bond distances and angles previously determined for this cation³ were used in the calculations. The normal vibrations, $\Gamma = 7 \text{ A}_1 + 2 \text{ A}_2$ $+ 3 B_1 + 6 B_2$, of the eight-atom model were divided into five out-of-plane, $2 A_2 + 3 B_1$, and thirteen inplane, 7 A_1 + 6 B_2 , vibrations. Only the in-plane vibrations were analyzed in this normal-coordinate treatment.

A modified Urey-Bradley force field⁹ which included stretch-stretch, stretch-bend, and bend-bend interactions was used to form the *F* matrix. *F* matrix elements and force field coefficients used appear in Tables IX and X. By use of the eighteen coordinates a G matrix was constructed according to previously outlined methods.¹⁰

Of the six redundant coordinates produced, three were expressed as sums of angles about each of the three ring carbon atoms and were removed by an orthogonal similarity transformation.¹¹ A fourth redundancy which represented the sum of the five angles in the ring was eliminated in the transformation from internal to symmetry coordinates. The set of symmetry coordinates established appears in Table I. After a highfrequency separation¹⁰ of the carbon-hydrogen stretching vibration, the partitioned secular determinant $|GF - E\lambda| = 0$ was solved separately for A₁ and B₂ representations. The last two redundancies generated zero frequencies. The normalized eigenvectors are given in Table 11. Assignment of vibrational modes was made by deriving the potential energy distribution¹² in each characteristic frequency as shown in Table 111.

(12) Y. Morino and **K.** Kuchitsu, *J. Chem. Phys.,* **20, 1809 (1952).**

Coordinate mode **A1** Species

$$
S_1 = \Delta r_4
$$
 A1 species

$$
\nu(S-S)
$$

$$
S_2 = \frac{1}{\sqrt{2}} (\Delta r_1 + \Delta r_1') \qquad \qquad \nu(\text{C} \cdots \text{S})
$$

$$
S_4 = \frac{1}{\sqrt{2}}(\Delta r_2 + \Delta r_2') \qquad \qquad \nu(\mathbf{C} \cdots \mathbf{C})
$$

$$
S_6 = \frac{1}{\sqrt{2}} (\Delta r_3 + \Delta r_3')
$$
 \t\t\t\t ν (C—CH₃)

$$
S_8 = \Delta r_5
$$
\n
$$
p(\text{C--H})
$$

$$
S_0 = \frac{1}{\sqrt{2}} (\Delta \alpha_2 - \Delta \alpha_3 + \Delta \alpha_2' - \Delta \alpha_3')^2
$$
 δ (C–CH₃)

$$
\Delta \alpha_1 + \Delta \alpha_1' - \Delta \alpha_6 - \Delta \alpha_6')
$$
 Ring def

$$
S_{16} = \frac{1}{\sqrt{20}} (-\Delta \alpha_1 - \Delta \alpha_1' - \Delta \alpha_6 - \Delta \alpha_6' + 4\Delta \alpha_4)
$$
 Ring def

Bz Species

$$
B_2 \text{ Species}
$$
\n
$$
= \frac{1}{\sqrt{2}} (\Delta r_1 - \Delta r_1')
$$
\n
$$
\nu(\text{C} \cdots \text{S})
$$

$$
S_{\delta} = \frac{1}{\sqrt{2}} (\Delta r_2 - \Delta r_2')
$$

$$
S_7 = \frac{1}{\sqrt{2}} (\Delta r_3 - \Delta r_3') \qquad \qquad \nu \text{(C--CH}_3)
$$

$$
S_{10} = \frac{1}{\sqrt{2}} (\Delta \alpha_2 - \Delta \alpha_3 - \Delta \alpha_2' + \Delta \alpha_3')^a
$$

\n
$$
S_{11} = \Delta \alpha_5 - \Delta \alpha_5'^a
$$

\n
$$
\delta \text{(C--H)}
$$

\n
$$
\delta \text{(C--H)}
$$

$$
S_{11} = \Delta \alpha_5 - \Delta \alpha_5'^a
$$

\n
$$
S_{11} = \frac{1}{2} (\Delta \alpha_1 - \Delta \alpha_1' + \Delta \alpha_2 - \Delta \alpha_1')
$$

\n
$$
S_{12} = \frac{1}{2} (\Delta \alpha_1 - \Delta \alpha_1' + \Delta \alpha_2 - \Delta \alpha_2')
$$

$$
S_{14} = \frac{1}{2}(\Delta \alpha_1 - \Delta \alpha_1' + \Delta \alpha_6 - \Delta \alpha_6')
$$
 Ring def

$$
S_{15} = \frac{1}{2} (\Delta \alpha_1 - \Delta \alpha_1' - \Delta \alpha_8 + \Delta \alpha_8')
$$
 Ring def

^a Not normalized.

 $S_{13} =$

 S_3

Jacobian matrix elements¹³ which express the rate of change of frequency with force constant are tabulated in Table IV. The force constant which yielded the greatest rate of change of a particular frequency represented the stable solution, *;.e.,* the predominant contribution to the normal mode. The latter results agree with the assignments based on the potential energy distribution.

Since there were more force constants than observed frequencies, six force constants, $H(CCH)$, $H(CCC)$, $H(CCCH_3)$, $F(C \cdots H)$, $F(C \cdots C)$, and $F(C \cdots CH_3)$, were constrained with values obtained for the same constants in the analysis of dithioacetylacetone chelates.' To attain optimum agreement between observed and calculated frequencies, the remaining ten force constants were treated as variables in a leastsquares force constant adjustment routine. **l4** Final values of force constants are listed in Table V. Since the average error between twelve observed and calculated frequencies in Table VI is 3.2% , the agreement is considered satisfactory.

⁽⁷⁾ (a) K. Nakamoto and **A.** E. Martell, *J. Chem. Phys.,* **82, 588 (1960); (b) K.** Nakamoto, P. J. McCarthy, **A.** Ruby, and **A.** E. Martell, *J. Am. Chem. Soc.,* **83, 1066 (1961);** (c) **K.** Nakamoto, P. **J.** McCarthy, and **A.** E. Martell, *ibid.,* **88, 1272** (1961); (d) **K.** Nakamoto, *Y.* Morimoto, and **A.** E. Martell, *J. Phys. Chem.,* **66, 346 (1962);** (e) **H.** Ogoshi and K. Nakamoto, *J. Chem. Phys.,* **45, 3113 (1966); (f) G. T.** Behnke and K. Nakamoto, *Inovg. Chem.,* **6, 433, 440 (1967);** *(9)* C. Y. Liang, **E.** J. Schmitschek, D. H. Stephens, and J. **A.** Trias, *J. Chem. Phys.,* **46, 1588 (1967).** (8) M. Mikami, I. Nakagawa, and T. Shimanouchi, *Sgectvochim. Acta,*

²³A, 1037 (1967).

⁽⁹⁾ T. Shimanouchi, *J. Chem. Phys.,* **17, 245, 734, 848 (1949).**

⁽¹⁰⁾ E. B. Wilson, J. C. Decius, and P. C. Cross, "Molecular Vibrations," McGraw-Hill Book **Co.,** Inc., New York, N. **Y., 1955,** Chapter **4.**

⁽¹¹⁾ K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds," John Wiley & Sons, Inc., New York, N. **Y., 1963, p 274.**

⁽¹³⁾ T. Miyazawa and J. Overend, *Bull. Chem. Soc. Japan,* **39, 1410 (1966).**

⁽¹⁴⁾ D. E. Mann, T. Shimannuchi, J. H. Meal, and I.. Fano, *J. Chem. Phys.,* **27, 43 (1957).**

TABLE II NORMALIZED L MATRIX ELEMENTS

TABLE III POTENTIAL ENERGY DISTRIBUTION, $F_{ii}L_{iN}^{ 2}$ (Per Cent Contribution)

TABLE IV

$\operatorname{\bf Table}$ V

FORCE CONSTANTS $(10^5$ DYN/CM) OF THE 3,5-DIMETHYL-1,2-DITHIOLYLIUM(I) CATION

Results and Discussion

The infrared spectrum of bis(3,5-dimethyl-1,2-dithiolylium) tetrachloroferrate(II) is shown in Figure 2 with the cation denoted as DTAA⁺ in the formula. Frequencies and force constants for the disulfide ring vibrations are similar to those in certain other sulfurcontaining compounds.¹⁵⁻¹⁷ Absorption bands which appear near 557 and 435 cm⁻¹ were assigned to ν (S-S) and have a counterpart in the spectrum of S_8^{15} in which the stretching frequency occurs at 465 cm^{-1} . The value of the stretching force constant in elemental sulfur, 2.04 mdyn/Å, is 0.16 mdyn/Å less than that of $K(S-S)$ in DTAA⁺. In view of the magnitude of the force constants and the valence force field used in calculations for S₈, the difference is probably too small to confirm the existence of important S-S multiple

(15) H. J. Bernstein and J. Powling, J. Chem. Phys., 18, 1018 (1950).

(16) A. Yamaguchi, R. B. Penland, S. Mizushima, T. J. Lane, C. Curran, and J. V. Quagliano, J. Am. Chem. Soc., 80, 527 (1958).

(17) S. Mizushima and T. Shimanouchi, "Infrared Absorption and the Raman Effect," Kyoritsu, Tokyo, 1959, as cited by J. Fujita and K. Nakamoto, J. Chem. Phys., 37, 528 (1964).

bonding. A higher $K(S-S)$ in DTAA⁺ would be in accord with results of X-ray studies³ which indicated significant double-bond character in the S-S bond of the cation.

sulfur double-bond character. The carbon-sulfur single-bond and double-bond stretching force constants of diethyl thioether,¹⁷ 2.50 mdyn/Å, and thiourea, 3.20 mdyn/A, respectively, are less than the value of the disulfide cation, 3.40 mdyn/ \AA . The existence of considerable π character in the carbon-sulfur bond of the 1,2-dithiolylium ion, first suggested from iterated

TABLE VIII POTENTIAL ENERGY DISTRIBUTION, $F_{ii}L_{iN}^{2}$ (Per Cent Contribution)

The carbon-sulfur stretching frequency at 697 cm^{-1} in the cation can be compared with $\nu(C \rightarrow S)$ at 730 cm-' in uncomplexed thiourea and at 700 cm-1 in thiourea-metal complexes.¹⁶ The decrease upon com-
plexation was attributed to a reduction in carbon- (19) Y. Kakiuchi, Bull. Chem. Soc. Japan, **26**, 260 (1953). plexation was attributed to a reduction in carbon-

Hückel calculations,¹⁸ is further supported. A comparison of the carbon-carbon stretching force constant in benzene,¹⁹ 5.46 mdyn/Å, with that of the cyclic

Figure 2.—Infrared spectrum of bis(3,5-dimethyl-1,2-dithiolylium) tetrachloroferrate(I1) in potassium bromide. Below 600 cm^{-1} the matrix is cesium bromide.

analyses of the corresponding vibrations of copper(I1) acetylacetonate.8

Methyl group and out-of-plane vibrations were assigned by comparison with similar modes in metal dithioacetylacetonates.¹ It was possible to compare these assignments with those obtained from a normalcoordinate analysis of methyl group vibrations in dimethyl sulfide.²⁰ For the latter compound the methyl symmetric and antisymmetric deformations were shown to occur at 1322 and 1433 cm⁻¹, respectively. These modes appear near 1351, 1371 and 1399, 1426 cm⁻¹ in the 1,2-dithiolylium cation.

Since tetrachloroferrate (II) vibrations²¹ do not appear above 300 cm^{-1} , these did not interfere with

A₁ Species

$$
F(1,1) = K_1 + 2i_1^2F_1' + 2s_1^2F_1
$$

\n
$$
F(1,2) = \sqrt{2}(-t_1t_2F_1' + t_3s_2F_1)
$$

\n
$$
F(1,6) = r_1(t_1s_2F_1' + t_2s_1F_1)
$$

\n
$$
F(1,7) = (1/\sqrt{5})F(1,6)
$$

\n
$$
F(2,2) = K_2 + t_3^2F_2' + t_3s_1F_2 + t_3^2F_3' + s_3^2F_3 + t_2^2F_1' + s_2^2F_1
$$

\n
$$
F(2,3) = -t_3t_4F_2' + s_3s_4F_2
$$

\n
$$
F(2,5) = -\frac{1}{2}r_3(t_3s_4F_2' + t_4s_3F_3)
$$

\n
$$
F(2,6) = (1/\sqrt{2})r_2(t_3s_4F_2' + t_4s_3F_2) - (1/2\sqrt{2})r_3(t_3s_4F_3' + t_3s_2F_1)
$$

\n
$$
F(2,7) = - (1/\sqrt{10})r_2(t_3s_4F_2' + t_4s_3F_2) + (1/2\sqrt{10})r_4(t_3s_1F_1' + t_1s_2F_1)
$$

\n
$$
r_3(t_3s_4F_3' + t_3s_5F_3) - (1/\sqrt{10})r_4(t_3F_1' + t_3s_2F_1)
$$

\n
$$
F(3,3) = K_3 + 2s_{11}F_6 + t_2^3F_6' + s_3^3F_5 + t_4^2F_2' + s_4^2F_4' + s_3^2F_4
$$

\n
$$
F(3,4) = -t_8t_1F_4' + s_8s_1F_4
$$

\n
$$
F(3,5) = \frac{1}{2}r_3(t_3s_1F_4' + t_1s_3F_4)
$$

\n
$$
F(3,6) = (1\sqrt{2})r_1(t_3s_
$$

disulfide ion, 4.70 mdyn/Å, suggests a lower carboncarbon π -bond order for the latter compound.

In-plane frequencies other than those assigned to stretching modes involving nuclei in the dithiolylium ring are similar to the same frequencies in the complexes of dithioacetylacetone.¹ The low-frequency vibrations ν_6 , ν_{11} , and ν_{12} were assigned on the basis of Mikami's

A₁ species (*Continued*)
\n
$$
F(6,7) = (1/2\sqrt{5})r_1r_4(H_1 - s_1s_2F_1' + t_1t_2F_1) -
$$
\n
$$
(1/2\sqrt{5})r_1r_2(H_2 - s_3s_4F_2' + t_3t_4F_2) - (1/8\sqrt{5}) \times
$$
\n
$$
r_1r_3(H_3 - s_5s_6F_3' + t_5t_6F_3) - (1/8\sqrt{5})r_2r_3(H_4 - s_1s_5F_4' + t_1t_8F_4)
$$
\n
$$
F(7,7) = \frac{1}{10}F(6,6) + \frac{2}{5}r_2r_3(H_5 - s_3s_{10}F_5' + t_9t_{10}F_5) + \frac{4}{5}r_2^2(H_6 - s_{11}F_6' + t_{11}F_6)
$$

B₂ Species

$$
F(1,1) = F(2,2)^{A_1}
$$

\n
$$
F(1,2) = F(2,3)^{A_1}
$$

\n
$$
F(1,3) = F(2,4)^{A_1}
$$

\n
$$
F(1,4) = F(2,5)^{A_1}
$$

\n
$$
F(1,6) = (1/\sqrt{2})r_2(t_8s_4F_2' + t_4s_3F_2) - (1/2\sqrt{2})r_3(t_5s_6F_3' + t_6s_5F_3) + (1/\sqrt{2})r_4(t_2s_1F_1' + t_1s_2F_1)
$$

\n
$$
F(1,7) = F(2,6)^{A_1}
$$

\n
$$
F(2,2) = K_8 + 2t_{11}{}^2F_6' + t_9{}^2F_5' + s_9{}^2F_5 + t_4{}^2F_2' + s_4{}^2F_2 + s_4{}^2F_4
$$

\n
$$
F(2,3) = F(3,4)^{A_1}
$$

\n
$$
F(2,4) = F(3,5)^{A_1}
$$

\n
$$
F(2,5) = (1/\sqrt{2})r_3(t_9s_{10}F_5' + t_{10}s_9F_5)
$$

\n
$$
F(2,6) = F(3,6)^{A_1}
$$

\n
$$
F(3,6) = F(4,6)^{A_1}
$$

\n
$$
F(3,7) = F(4,6)^{A_1}
$$

\n
$$
F(3,7) = F(4,6)^{A_1}
$$

\n
$$
F(4,4) = F(5,5)^{A_1}
$$

\n
$$
F(4,6) = F(5,6)^{A_1}
$$

\n
$$
F(5,5) = \frac{1}{2}r_2r_5(H_5 - s_9s_{10}F_6' + t_9t_{10}F_6)
$$

\n
$$
F(6,6) = F(6,6)^{A_1}
$$

\n
$$
F(6,7) = \frac{1}{2}r_1r_4(H_1 + s_1s_2F_1' + t_
$$

 $F(7,7) = F(6,6)^{A_1}$

those calculated for $DTAA^+$. The infrared spectra of the tetrachloroferrate and iodide⁶ salts of the $1,2$ dithiolylium ion are essentially the same except differences do exist in the character of the methyl deformation and rocking bands. The small variations

⁽²⁰⁾ J. *hl.* Freeman and T. Henshall, *Can. J. Chcm.,* **46, 2175** (1908).

⁽²¹⁾ **A.** Sabatini and L. Sacconi, *J. Am. Chem.* Soc., *86,* 17 **(1064).**

TABLE X

observed possibly arise from changes in methyl group environment in the different lattices.

The results of the normal-coordinate analysis are consistent with the absence of iron-sulfur bonding shown by X-ray diffraction studies.

An opportunity to apply the normal-coordinate treatment developed for DTAA⁺ to another compound possibly of identical structure was provided by the recent synthesis of salts of the 3,5-dimethyl-1,2 diselenolylium ion hereafter denoted as DSeAA+. After carbon-selenium and selenium-selenium bond lengths for this cation were estimated, bond angles for a planar five-membered diselenide ring were adjusted by reference to molecular parameters of DTAA+ which were common to $DSeAA^+$. Except for $K(C-Se)$ and $K(Se-Se)$, which were varied to obtain a best fit between observed and calculated frequencies, the force constants used were transferred from the disulfide cation. Assignments based on potential energy distributions which appear in Table VI11 were supported by calculation of Jacobian terms. Based on the model adopted good agreement was obtained between calculated and observed frequencies as recorded in Table VII.

The weak band near 600 cm^{-1} was assigned to the carbon-selenium stretching vibration. It was of interest to note the corresponding force constant, 2.80 mdyn/Å, almost equals 2.78 mdyn/Å, which is the value for $K(C-Se)$ in the metal chelates of diethyldiselenocarbamic acid.²² Although a pure seleniumselenium stretching vibration was not predicted, an absorption band close to 320 cm^{-1} and one predicted near 290 cm^{-1} were assigned to coupled modes which contain that vibration. In the series of seleniumselenium bonded compounds—dimethyl selenide, Se_4^2 ⁺, and Se₂-the intermediate value, 2.20 mdyn/ \AA , for $Se₄²⁺$ has been considered²³ to indicate the existence of a degree of multiple bonding. Since the corresponding force constant is 2.00 mdyn/ \AA for the diselenide ion, the selenium double-bond character of the two ions is probably similar.

The carbon-selenium stretching force constant in the diselenolylium ion is less than the carbon-sulfur constant in the dithiolylium ion. Similar decreases were observed in the pairs of compounds selenourea, thiourea and selenoacetamide, thioacetamide. **24** These trends conform to the usual expectation for differences in selenium and sulfur bond energies.

Acknowledgment.-The authors thank the National Research Council of Canada for their financial support of this work.

(22) G. Durgaprasad, D. N. Sathyanarayana, and C. C. Patel, Can. J. (23) R. J. Gillespie and G. P. Pes, *Inoug.* Chem., *8,* 1229 (1969). Chem., **47,** 631 (1969).

(24) A. Azman, M. Drofenik, D. Hadzi, and B. Lakman, J. Mol. Struct., **1,** 181 (1967).

> CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, THE UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30601

The Preparation and Properties of Diorganoselenium Difluorides

BY KENNETH J. WYNNE

Received August 25, 1969

The synthesis of a number of alkyl- and aryldiorganoselenium difluorides is reported from the reaction of silver(II) fluoride with diorganoselenides. Diorganoselenium difluorides are liquids or low-melting solids which are monomers in benzene solution. Infrared and *19F* and *'H* nmr data are presented and discussed with regard to bonding and fluorine exchange in these compounds.

chalcogen fluorides were unstable.¹ However, Sheppard² municated the synthesis of the first reported example of has demonstrated the stability of organosulfur tri- and a diorganoselenium difluoride, dimethylselenium dipentafluorides. In a continuing study of organose- fluoride,⁴ from the reaction of dimethyl selenide with lenium halides³ we have found further evidence for the

(1) H. J. Emeléus and H. G. Heal, *J. Chem. Soc.*, 1126 (1946).

(2) W. Sheppard, *J.* Am. Chem. Soc., **84,** 3058 (1962).

Some years ago it was suggested that higher organo- stability of organochalcogen fluorides. We have com-

(3) (a) K. J. Wynne and J. W. George, *ibid.,* **91,** 1649 (1969): **(b)** ibid., **87,** 4750 (1965).

⁽⁴⁾ K. J. Wynne and J. Puckett, *Chem. Commun.*, 1532 (1968).